

Models: D-04, G-04

1204 Chestnut Avenue, Minneapolis, MN 55403 TEL: (612) 332-5681 FAX: (612) 332-6937 TOLL-FREE FAX [US only]: (800) 332-6812

www.hydra-cell.com email: sales@wannereng.com

D/G-04 Contents

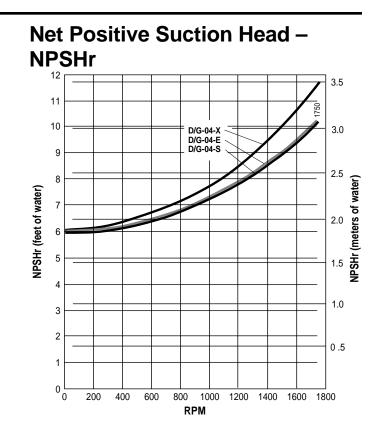
Page

Specifications	2
Dimensions	4
Installation	5
Maintenance	9
Service (Fluid End)	10
Service (Hydraulic End)	14
Troubleshooting	17

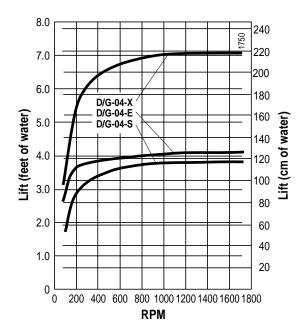
D/G-04 Specifications

Max Pressure 2.50	0 psi (170 k) ar)	
Capacity @ Max Pre	• •	Jaij	
	rpm	gpm	I/min
D/G-04-X	1750	2.9	11.0
D/G-04-E	1750	2.1	7.8
D/G-04-S	1750	1.6	6.1
Delivery @ Rated Pr		1.0	0.1
	revs/gal		
	500 psi	1500 psi	2500 psi
D/G-04-X	565	583	603
D/G-04-E	761	795	833
D/G-04-S	921	972	1,093
	revs/liter		
	35 bar	100 bar	170 bar
D/G-04-X	149	154	159
D/G-04-E	201	211	224
D/G-04-S	244	257	287
Max Inlet Pressure	Max Inlet Pressure 500 psi (35 bar)		
Max Temperature	Max Temperature 250°F (121°C) – consult factory for		t factory for
	temperatur	es above 160	°F (71°C)
Inlet Port	D-04: 1/2 inch NPT		
	G-04: 1/2 inch BSPT		
Discharge Port	D-04: 1/2 inch NPT		
-	G-04: 1/2 i	nch BSPT	
Shaft Diameter	7/8 inch (22.22 mm)		
Shaft Rotation	Bi-directional		
Bearings	Ball bearings		
Oil Capacity	1.1 US quarts (1.05 liters)		
Weight	37 lbs (16.8 kg)		

Calculating Required Horsepower (kW)*


6 x rpm 63,000	+ $\frac{\text{gpm x psi}}{1,460 - (\frac{\text{psi} - 500}{20})^2}$	electric motor HP*
6 x rpm 84,428	$+ \frac{\text{gpm x bar}}{511 - \left(\frac{\text{bar} - 35}{4}\right)} =$	electric motor kW*

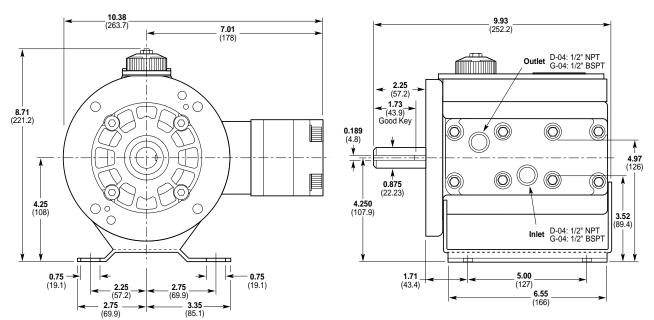
* rpm equals pump shaft rpm. HP/kW is required application power. Use caution when sizing motors with variable speed drives.


D/G-04 Specifications

RPM 800 200 400 600 1000 1600 1800 0 1200 1400 3.33 12.5 1750 11.25 3.00 D/G-04-X 2.66 10 500 PSI (35 bar) 1500 PSI (100 bar) — — — 2500 PSI (170 bar) — 8.75 2.33 D/G-04-E **Gallons per Minute** 1.66 7.5 **Fitters ber Winnte** 1.33 5.0 D/G-04-S 3.75 1.00 0.66 2.5 0.33 1.25 Ø

Performance

Dry Lift


D/G-04 Dimensions

D/G-04 Models with Metallic Pumping Head

Brass

304 Stainless Steel

316 Stainless Steel

D/G-04 Installation

NOTE: The numbers in parentheses are the Reference Numbers on the illustrations in the Parts Manual.

Location

Locate the pump as close to the supply source as possible.

Install it in a lighted clean space where it will be easy to inspect and maintain. Allow room for checking the oil level, changing the oil, and removing the pump head (manifold, valve plate and related items).

Mounting

The pump shaft can rotate in either direction. To prevent vibration, securely attach the pump to a rigid base.

On a belt-drive system, align the sheaves accurately; poor alignment wastes horsepower and shortens the belt and bearing life. Make sure the belts are properly tightened, as specified by the belt manufacturer.

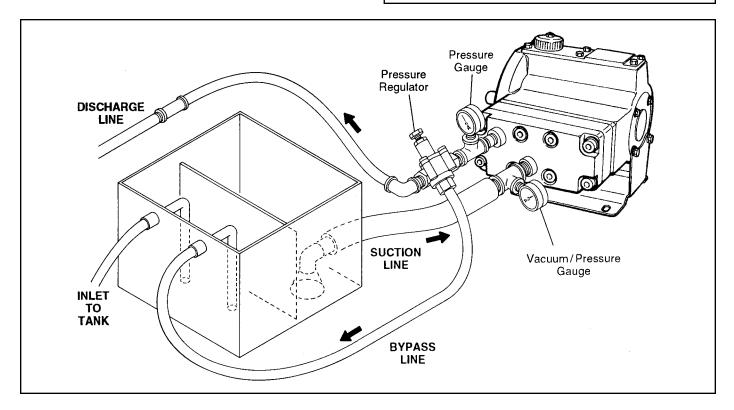
On a direct-drive system, align the shafts accurately. Unless otherwise specified by the coupling manufacturer, maximum parallel misalignment should not exceed .015" and angular misalignment should be held to 1 degree maximum. Careful alignment extends life of the coupling, pump, shafts, and support bearings. Consult coupling manufacturer for exact alignment tolerances.

On a close-coupled system, coat the motor shaft liberally with anti-seize.

Important Precautions

Adequate Fluid Supply. To avoid cavitation and premature pump failure, be sure that the pump will have an adequate fluid supply and that the inlet line will not be obstructed. See "Inlet Piping".

Positive Displacement. This is a positive-displacement pump. To avoid severe system damage if the discharge line ever becomes blocked, install a relief valve downstream from the pump. See "Discharge Piping".


Safety Guards. Install adequate safety guards over all pulleys, belts, and couplings. Follow all codes and regulations regarding installation and operation of the pumping system.

Shut-Off Valves. Never install shut-off valves between the pump and discharge pressure regulator, or in the regulator bypass line.

Freezing Conditions. Protect the pump from freezing. See also the Maintenance Section.

Consult the Factory for the following situations:

- Extreme temperature applications above 160° F (71°C) or below 40° F (4°C)
- Pressure feeding of pumps
- · Viscous or abrasive fluid applications
- · Chemical compatibility problems
- Hot ambient temperatures above 110° F(43°C)
- Conditions where pump oil may exceed 200° F (93°C) because of a combination of hot ambient temperatures, hot fluid temperature, and full horsepower load — an oil cooler may be required

D/G-04 Installation

Inlet Piping (Suction Feed)

CAUTION: When pumping at temperatures above 160° F (71° C), use a pressure-feed system.

Install draincocks at any low points of the suction line, to permit draining in freezing conditions.

Provide for permanent or temporary installation of a vacuum gauge to monitor the inlet suction. To maintain maximum flow, vacuum at the pump inlet should not exceed 7 in. Hg at 3 gpm and 70° F (180 mm Hg at 11.4 liters/min and 21° C). Do not supply more than one pump from the same inlet line.

Supply Tank

Use a supply tank that is large enough to provide time for any trapped air in the fluid to escape. The tank size should be at least twice the maximum pump flow rate.

Isolate the pump and motor stand from the supply tank, and support them separately.

Install a separate inlet line from the supply tank to each pump.

Install the inlet and bypass lines so they empty into the supply tank below the lowest water level, on the opposite side of the baffle from the pump suction line.

If a line strainer is used in the system install it in the inlet line to the supply tank.

To reduce aeration and turbulence, install a completely submerged baffle plate to separate the incoming and outgoing liquids.

Install a vortex breaker in the supply tank, over the outlet port to the pump.

Place a cover over the supply tank, to prevent foreign objects from falling into it.

Hose Size and Routing

Use the shortest, most-direct route from the supply tank to the pump. If elbows are needed, 45° are recommended. Any restrictions in the inlet piping may cause pump output to drop. **Do not install any 90° elbows in the pump inlet.**

- Use flexible noncollapsible hose between the pump and rigid piping or supply tank. This will absorb vibration, and allow for expansion or contraction.
- Use the largest practical hose. The smallest permissible size is 5/8 in. (16 mm) I.D.
- All valves, fittings, and unions must also have 5/8-in. (16 mm) minimum I.D. Do not exceed 5 feet of hose and piping between and supply tank and the pump inlet.
- Support the pump and piping independently.
- Make sure all joints are sealed and tight, to prevent the pump from drawing air into the inlet.
- Do not use a line strainer or filter in the suction line unless regular maintenance is assured. If used, it should have a free-flow area of at least three times the free-flow area of the inlet.

Inlet Piping (Pressure Feed)

Provide for permanent or temporary installation of a vacuum/ pressure gauge to monitor the inlet vacuum or pressure. Pressure at the pump inlet should not exceed 500 psi (34 bar); if it could get higher, install an inlet pressure regulator.

Do **not** supply more than one pump from the same inlet line.

Inlet Calculations

Acceleration Head

Calculating the Acceleration Head

Use the following formula to calculate acceleration head losses. Subtract this figure from the NPSHa, and compare the result to the NPSHr of the Hydra-Cell pump.

 $Ha = (L \times V \times N \times C) \div (K \times G)$

where:

- Ha = Acceleration head (ft of liquid)
- L= Actual length of suction line (ft) not equivalent length
- V= Velocity of liquid in suction line (ft/sec) [V = GPM x (0.408 ÷ pipe ID²)]
- N= RPM of crank shaft
- C= Constant determined by type of pump use 0.066 for the D-04 and G-04 Hydra-Cell pumps
- K= Constant to compensate for compressibility of the fluid use: 1.4 for de-aerated or hot water; 1.5 for most liquids; 2.5 for hydrocarbons with high compressibility
- G=Gravitational constant (32.2 ft/sec²)

D/G-04 Installation

Friction Losses

Calculating Friction Losses in Suction Piping

When following the above recommendations (under "inlet Piping") for minimum hose/pipe I.D. and maximum length, frictional losses in the suction piping are negligible (i.e., Hf = 0) if you are pumping a water-like fluid.

When pumping more-viscous fluids such as lubricating oils, sealants, adhesives, syrups, varnishes, etc., frictional losses in the suction piping may become significant. As Hf increases, the available NPSH (NPSHa) will decrease, and cavitation will occur.

In general, frictional losses increase with increasing viscosity, increasing suction-line length, increasing pump flowrate, and decreasing suction-line diameter. Changes in suction-line diameter have the greatest impact on frictional losses: a 25% increase in suction-line diameter cuts losses by more than two times, and a 50% increase cuts losses by a factor of five times.

Consult the factory before pumping viscous fluids.

Minimizing Acceleration Head and Frictional Losses

To minimize the acceleration head and frictional losses:

- Keep inlet lines less than 3 ft (1 m) long
- Use at least 5/8 in. (16 mm) I.D. inlet hose
- Use soft hose (low-pressure hose, noncollapsing) for the inlet lines
- Minimize fittings (elbows, valves, tees, etc.)
- Use a suction stabilizer on the inlet.

Net Positive Suction Head

NPSHa must be equal to or greater than NPSHr. If not, the pressure in the pump inlet will be lower than the vapor pressure of the fluid— and cavitation will occur.

Calculating the NPSHa

Use the following formula to calculate the NPSHa:

NPSHa = Pt + Hz - Hf - Ha - Pvp

where:

Pt = Atmospheric pressure

Hz = Vertical distance from surface liquid to pump centerline (if liquid is below pump centerline, the Hz is negative)

Hf = Friction losses in suction piping

Ha = Acceleration head at pump suction

Pvp = Absolute vapor pressure of liquid at pumping temperature NOTES:

- In good practice, NPSHa should be 2 ft greater than NPSHr
- All values must be expressed in feet of liquid

Atmospheric Pressure at Various Altitudes

Altitude (ft)	Pressure (ft of H ₂ O)	Altitude (ft)	Pressure (ft of H ₂ O)
0	33.9	1500	32.1
500	33.3	2000	31.5
1000	32.8	5000	28.2

Discharge Piping

NOTE: Consult the Factory before manifolding two or more pumps together.

NOTE: Single-acting pumps create a pulsing flow. Using pulsation dampening devices in the discharge line can reduce or eliminate this.

Hose and Routing

Use the shortest, most-direct route for the discharge line.

Select pipe or hose with a **working pressure** rating of at least 1.5 times the maximum system pressure. EXAMPLE: Select a 3000-psi W.P.-rated hose for systems to be operated at 2000-psi-gauge pressure.

Use about 6 ft (1.8 m) of flexible hose between the pump and rigid piping.

Support the pump and piping independently.

Pressure Regulation

Ilnstall a pressure regulator or unloader in the discharge line. Bypass pressure must not exceed the pressure limit of the pump.

Size the regulator so that, when fully open, it will be large enough to relieve the full capacity of the pump without overpressurizing the system.

Locate the valve as close to the pump as possible and ahead of any other valves.

Adjust the pressure regulating valve to no more than 10% over the maximum working pressure of the system. Do not exceed the manufacturer's pressure rating for the pump or regulator.

Route the bypass line to the supply tank, or to the suction line as far as possible from the pump (to reduce the chance of turbulence and cavitation).

If the pump may be run for a long time with the discharge closed and fluid bypassing, install a thermal protector in the bypass line (to prevent severe temperature buildup in the bypassed fluid).

CAUTION: Never install shutoff valves in the bypass line or between the pump and pressure regulator or relief valve.

Provide for permanent or temporary installation of a pressure gauge to monitor the discharge pressure at the pump.

For additional system protection, install a "pop-off" safety relief valve in the discharge line, downstream from the pressure regulator.

Before Initial Start-Up

Before you start the pump, be sure that:

- All shutoff valves are open, and the pump has an adequate supply of fluid.
- All connections are tight.
- The oil level is 1/4 inch (6 mm) above the cast surface in the upper oil reservoir.
- The relief valve on the pump outlet is adjusted so the pump starts under minimum pressure.
- All pulleys and belts are properly aligned, and belts are tensioned according to specification.
- All pulleys and belts have adequate safety guards.

Initial Start-Up Procedure

- 1. Turn on power to the pump motor.
- Check the inlet pressure or vacuum. To maintain maximum flow, inlet vacuum must not exceed 7 in. Hg at 70° F (180 mm Hg at 21° C). Inlet pressure must not exceed 500 psi (34 bar).
- 3. Listen for any erratic noise, and look for unsteady flow. If the pump does not clear, refer to the Trouble-shooting Section.
- 4. If the system has an air lock and the pump fails to prime:
 - a. Turn off the power.

b. Remove the pressure gauge or plug from the tee fitting at the pump outlet (refer to the illustration on page 3).

NOTE: Fluid may come out of this port when the plug is removed. Provide an adequate catch basin for fluid spillage, if required. Fluid will come out of this port when the pump is started, so we recommend that you attach adequate plumbing from this port so fluid will not be sprayed or lost. Use high-pressure-rated hose and fittings from this port. Take all safety precautions to assure safe handling of the fluid being pumped.

c. Jog the system on and off until the fluid coming from this port is air-free.

d. Turn off the power.

e. Remove the plumbing that was temporarily installed, and reinstall the pressure gauge or plug.

- 5. Adjust the discharge pressure regulator to the desired operating and bypass pressures. Do not exceed the maximum pressure rating of the pump.
- 6. After the pressure regulator is adjusted, set the "pop-off" safety relief valve at 100 psi (7 bar) higher than the desired operating pressure. To verify this setting, adjust the discharge pressure regulator upward until the relief valve opens. Follow the recommendations in the above NOTE (step 4b) for handling the fluid that will come from the relief valve.
- 7. Reset the discharge pressure regulator to the desired system pressure.
- 8. Provide a return line from the relief valve to the supply tank, similar to the bypass line from the pressure regulator.

D/G-04 Maintenance

NOTE: The numbers in parentheses are the Ref. Nos. on the illustrations in the Parts Manual.

Daily

Check the oil level and the condition of the oil. The oil level should be 1/4 in. (6 mm) above the cast surface in the upper oil reservoir.

Use the appropriate Hydra-Oil for the application (contact Wanner Engineering if in doubt).

CAUTION: If you are losing oil but don't see any external leakage, or if the oil becomes discolored and contaminated, one of the diaphragms (17) may be damaged. Refer to the Fluid-End Service Section. Do not operate the pump with a damaged diaphragm.

CAUTION: Do not leave contaminated oil in the pump housing or leave the housing empty. Remove contaminated oil as soon as discovered, and replace it with clean oil.

Periodically

Change the oil after the first 100 hours of operation, then change according to the quidelines below. When changing, remove the drain plug (60) at the bottom of the pump so all oil and accumulated sediment will drain out.

Hours Between Oil Changes @ Various Process Fluid Temperatures

Pressure	RPM	<90°F (32°C)	<139°F (60°C)	<180°F (82°C)
<1500 psi (100 bar)	<1200 <1800	6,000 3,000	4,000 2,000	2,000 1,500
<2500 psi (170 bar)	<1200 <1800	3,000 1,500	2,000	1,500 1,000

NOTE: Minimum oil viscosity for proper hydraulic end lubrication is 16-20 cST (80-100 SSU).

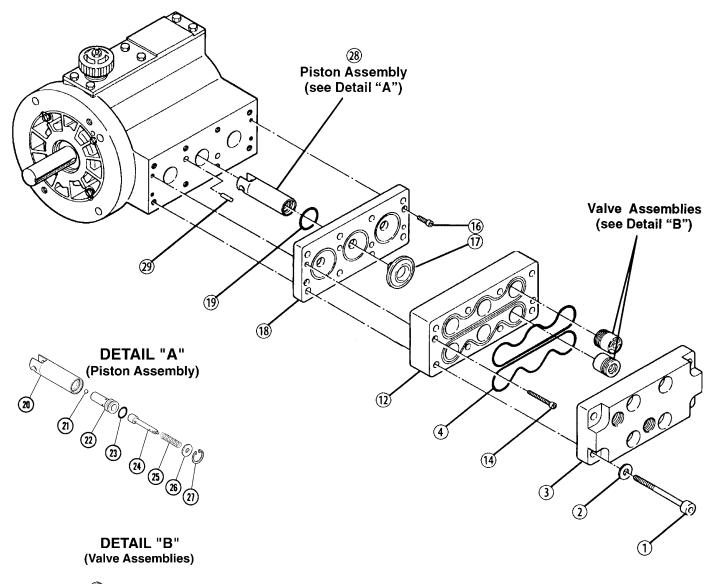
NOTE: Use of an oil cooler is recommended when process fluid and/or hydraulic end oil exceeds $180^{\circ}F$ ($82^{\circ}C$).

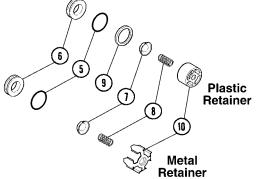
CAUTION: Do not turn the drive shaft while the oil reservoir is empty.

Check the inlet pressure or vacuum periodically with a gauge. If vacuum at the pump inlet exceeds 7 in. Hg (180 mm Hg), check the inlet piping system for blockages. If the pump inlet is located above the supply tank, check the fluid supply level and replenish if too low.

CAUTION: Protect the pump from freezing. Refer also to the "Shutdown Procedure".

Shutdown Procedure During Freezing Temperatures


Take all safety precautions to assure safe handling of the fluid being pumped. Provide adequate catch basins for fluid drainage and use appropriate plumbing from drain ports, etc., when flushing the pump and system with a compatible antifreeze.


- 1. Adjust the discharge pressure regulating valve so the pump runs under minimum pressure. Stop the pump.
- Drain supply tank; open any draincocks in system piping and collect drainage. Drain as much fluid from the pump manifold and plumbing attached directly to the pump manifold by loosening fittings or removing plugs or gauges.
- 3. Close draincocks in system piping and tighten or replace any fittings, gauges or plugs.
- 4. Fill supply tank with enough antifreeze to fill system piping and pump.

NOTE: Disconnect the system return line from the supply tank and connect it to a separate reservoir.

- 5. Start the pump and allow it to run until the system is filled with antifreeze. NOTE: If the system has an airlock and the pump fails to prime, follow step 4 of the Initial Startup Procedure to clear the air.
- 6. When mostly antifreeze is flowing from the system return line, stop the pump. Connect the system return line back to the supply tank and circulate the antifreeze for a short period.
- 7. It is also good practice to change the oil in the hydraulic end before storage for an extended period. This will remove any accumulated condensation and sediment from the oil reservoir. Drain and refill the hydraulic end with the appropriate Hydra-Oil and operate the pump for a short period to assure smooth performance.

D/G-04 Service (Fluid End)

Bolt Torque Specifications

Ref. No.	D-04	G-04
1	50 ft-lbs	70 Nm
17	10 in-lbs	110 Ncm

NOTE: The number in parentheses are the Reference numbers on the illustration at right and in the Parts Manual.

This section explains how to disassemble and inspect all easily serviceable parts of the pump. Repair procedures for the hydraulic end (oil reservoir) of the pump are included in a later section of the manual.

CAUTION: Do not disassemble the hydraulic end unless you are a skilled mechanic. For assistance, contact Wanner Engineering (TEL 612-332-5681 or FAX 612-332-6937) or the distributor in your area.

CAUTION: The two capscrews (16) that screw through the diaphragm plate in the pump housing hold the diaphragm plate over the hydraulic end of the pump. Do not remove them except when repairing the hydraulic end.

Tools and Supplies

- Straightedge (at least 6 in. long)
- Grease or petroleum jelly
- Torque wrench, rated to at least 50 ft-lbs (70 N-m)
- Emery cloth
- 1/2-in. drive socket wrench
- 5/16-in. (8-mm) open-end wrench
- 5-mm hex Allen wrench
- 8-mm hex bit socket (1/2 inch drive)
- Wanner D-04/G-04 Tool Kit, which includes the following:
 - Seat puller
 - Plunger holder
 - Plunger guide lifter
 - Shaft rotator

Service Procedures

1. Remove Manifold (3) and Valve Plate (12)

- a. Remove all eight capscrews (1) around the manifold. Use an 8-mm hex Allen wrench.
- b. Remove the manifold (3).
- c. Inspect the manifold for warping or wear around the inlet and outlet ports. If wear is excessive, replace the manifold.

To check if the manifold is warped, place a straightedge across it. A warped manifold should be replaced.

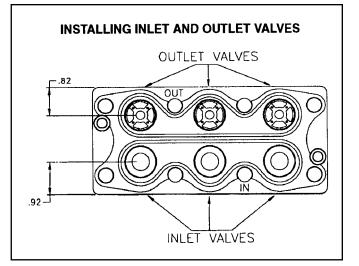
- d. Remove the two socket-head capscrews (14) that hold the valve plate to the pump housing. Use a 5-mm hex Allen wrench.
- Inspect the valve plate in the same manner as the manifold, for excessive wear and/or warping. Replace if necessary.

2. Inspect Valves (5-11)

The three inlet and three outlet valve assemblies are identical (but face in opposite directions). Inspect each valve as follows:

- a. Check the spring retainer (10), and replace if worn.
- b. Check the valve spring (8). If shorter than a new spring, replace it (do not stretch a used spring).
- c. Check the valve (7). If worn excessively, replace it.
- d. Remove the valve seat (6), O-ring (5), and dampening washer (11) (See note below). A seat puller is included in the Wanner Tool Kit. Inspect all parts for wear. In all instances, O-ring (5) should be replaced. Replace the valve seat and/or dampening washer if necessary.

NOTE: On newer pump models, the dampening washer (11) is not used because the valve seat (6) is thicker. When replacing the valve seat on an older pump model which has dampening washers, do <u>not</u> reinstall the dampening washers as the new valve seat is thicker than the original.


e. Reinstall the valve assemblies:

• Clean the valve ports and shoulders with emery cloth, and lubricate them with lubricating gel or petroleum jelly.

• Install the O-ring (5) on the valve seat (6).

• Inlet (3 lower valves in the illustration below). Insert the spring retainer (10) into the valve plate, then insert the spring, valve, Tetra seal, valve seat, and dampening washer (8,7,9,6,11). A flat O-ring (Tetra seal, 9) goes between the retainer and seat.

• Outlet (3 upper valves in the illustration below). Insert the dampening washer, valve seat, Tetra seal, valve, and spring, then the retainer. Install the flat O-ring (Tetra seal, 9) between the retainer and seat.

3. Inspect and Replace Diaphragms (17)

- a. Lift a diaphragm by one edge, and turn the pump shaft until the diaphragm moves up to "top dead center". This will expose machined cross-holes in the plunger shaft behind the diaphragm.
- Insert the plunger holder tool through one of the machined cross-holes, to hold the diaphragm up. (Don't remove the tool until the new diaphragm is installed in step "f" below.)
- c. Unscrew the diaphragm. Use a 5/16-in. (8-mm) openend wrench, and turn counterclockwise.
- d. Inspect the diaphragm carefully. A damaged diaphragm generally indicates a pumping system problem and replacing only the diaphragm will not solve the larger problem. Inspect the diaphragm for the following:

• **Small puncture**. Usually caused by a sharp foreign object in the fluid, or by an ice particle.

• **Diaphragm pulled away** from the metal insert. Usually caused by excessive inlet vacuum, or by overpressurization of the pump inlet.

• Outer diaphragm bead extruded. Usually caused by overpressurization of the pump.

• **Diaphragm becoming stiff** and losing flexibility. Usually caused by pumping a fluid that is incompatible with the diaphragm material.

• Cut diaphragm convolute. Usually caused by excessive inlet vacuum.

CAUTION: If a diaphragm has ruptured and foreign material or water has entered the oil reservoir, do not operate the pump. Check all diaphragms, then flush the reservoir completely (as outlined below) and refill it with fresh oil. Never let the pump stand with foreign material or water in the reservoir, or with the reservoir empty.

- e. Clean away any spilled oil.
- f. Install a good or new diaphragm and tighten to 10 in.-lbs (110 N-cm).
- g. Repeat the above inspection procedure (and replacement, if necessary) with the other two diaphragms.

4. Flush Contaminant from Hydraulic End

(only if a diaphragm has ruptured)

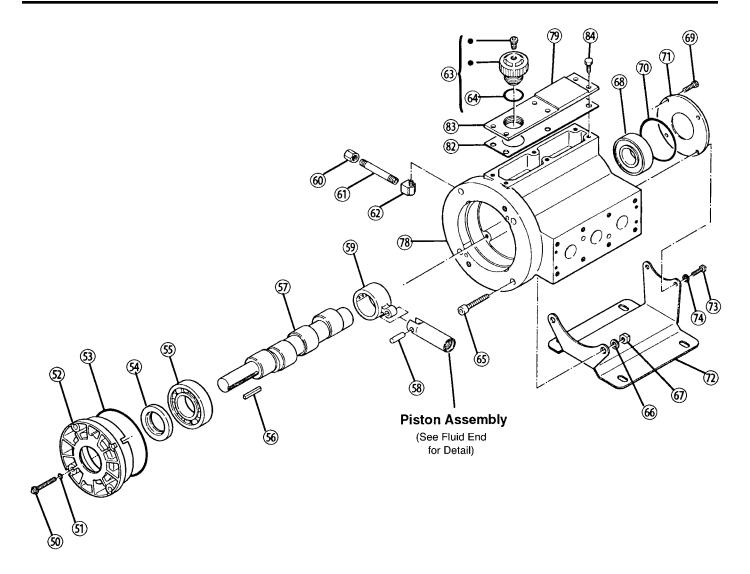
- a. With the valve plate and manifold still removed (see above), remove the oil drain cap (60) allow all oil and contaminant to drain out.
- Fill the reservoir with kerosene or solvent, manually turn the pump shaft to circulate the kerosene, and drain. Dispose of this contaminated fluid properly.
- c. Repeat the flushing procedure (step "b" above).
- d. Fill the reservoir with fresh oil, manually turn the pump shaft to circulate the oil, and drain again.
- e. Refill the reservoir. If the oil appears milky, there is still contaminant in the reservoir. Repeat the flushing procedure until the oil appears clean.

5. Prime the Hydraulic Cells

- a. With the pump **horizontal**, fill the reservoir with the appropriate Hydra-oil for the application.
- b. All air in the oil within the hydraulic cell (behind the diaphragms) must be forced out by turning the shaft and thus pumping the piston. Use a glove when turning the shaft by hand.

Turn the shaft until a **bubble-free** flow of oil comes from behind all the diaphragms. Watch the oil level in the reservoir: if it gets too low during priming, air will be drawn into the piston (inside the hydraulic end). This will cause the pump to run rough, and you will have to start over again with priming the hydraulic cells.

- c. After the Hydra-Cells are fully primed, ensure that the oil level is 1/4 in. (6 mm) above the cast surface in the upper oil reservoir.
- d. Wipe excess oil from the diaphragm plate and diaphragms.


6. Reinstall Valve Plate (12) and Manifold (3)

a. Reinstall the valve plate (12), with the valve assemblies installed as outlined above, onto the diaphragm plate (18) and alignment pins (29).
Tighten the two socket-head capscrews evenly and

snugly to compress the outer diaphragm beads and hold the valve plate in place.

- b. Reinstall the O-rings (4) on the front side of the valve plate. Use petroleum jelly or lubricating gel to hold them in place.
- c. Reinstall the manifold onto the valve plate.
- d. Insert all capscrews (1), with washers (2), around the edge of the manifold, and alternately tighten opposite bolts until all are secure. Torque to 50 ft-lbs (70 N-m).
- e. Recheck all bolts for tightness and proper torque.

D/G-04 Service (Hydraulic End)

D/G-04 Service (Hydraulic End)

NOTE: The numbers in parentheses are the Ref. Nos. on the illustrations in the Parts Manual.

This section explains how to disassemble and inspect the hydraulic end (oil reservoir) of the pump.

CAUTION: Do not disassemble the hydraulic end unless you are a skilled mechanic. For assistance, contact Wanner Engineering (TEL 612-332-5681 or FAX 612-332-6937) or the distributor in your area.

Depending on the repair you are attempting, you may or may not have to remove the motor from a direct-drive pump/motor unit.

Internal piston components (21-27) can be serviced without removing the motor or crankshaft. The motor and crankshaft must be removed to service the connecting rod (59), piston housing (20), crankshaft (57), front bearing (68), back bearing (56), or seal (54).

Tools and Supplies

• Tools required for hydraulic end only:

- Snap-ring pliers
- Small hook
- 8-mm socket wrench

To Service Pistons Without Removing Motor or Crankshaft

1. Disassemble Pistons

With the manifold, valve plate, diaphragm plate, and diaphragms removed, and the oil drained from the pump (see the Fluid-End Service Section):

- a. Remove the snap ring (27) from one of the pistons, using a standard snap-ring pliers.
- b. Pull out the valve plunger (24). This also removes the washer (26) and spring (25).
- c. Insert a small hook through the center hole of the valve cylinder (22), and pull the cylinder out of the piston. Be careful not to damage the piston.
- d. Inspect all parts, and replace the O-ring and any other parts that are worn or may be damaged.
- e. Repeat steps "a" through "d" for the remaining pistons.

2. Reassemble Pistons

- a. Tip the pump so the pistons are vertical.
- b. Drop a ball (21) into the opening in the bottom of the piston.
- c. Insert the valve plunger (24) into a valve cylinder (22). Slide a spring (25) over the plunger, inside the valve cylinder.
- d. Slide the assembled valve cylinder, plunger, and spring (22-25) into the piston (20).
- e. Insert the washer (26) over the plunger.
- f. Using the snap-ring pliers, insert a snap ring (27) into the piston.
- g. Repeat the above procedure for the other two pistons.

To Service Remainder of Hydraulic End

1. Remove Pump Housing

- a. Remove the manifold, valve plate, diaphragm plate, and diaphragms, as outlined in the Fluid-End Service Section.
- b. Drain the oil from the pump housing by removing the drain plug (60).
- c. Stand the pump on end, with the drive shaft up.
- d. Remove the bolts (50) that secure the back cover (52) to the housing (78). Use an 8-mm socket wrench. Save the O-rings (51).
- e. Remove the cover and the cover O-ring (53).
- f. Remove the crankshaft (57) by pulling it through the connecting rods (59).

2. Remove and Replace Pistons

To remove the pistons (20), first remove the connecting rod (59) and pin (58) by pressing the pin through the connecting rod.

Reverse the process to reinstall the piston.

Refer to Steps 5 and 6 below to replace the diaphragm and reassemble the pump.

D/G-04 Service (Hydraulic End)

3. Replace Shaft Seal

NOTE: Inspect the shaft seal (54) before continuing. If it looks damaged in any way, replace it.

- a. Press the back bearing (55) and seal (54) out of the cover (52). Discard the seal.
- b. Apply a coating of Loctite High-Performance Pipe Sealant with Teflon[®], or a comparable product, to the outer surface of a new seal and the inside surface of the opening in the back cover (52) where the seal will rest.
- c. Press the new seal into the back cover.
- d. Inspect the bearing (55). If pitted or damaged, replace it.
- e. Apply a coating of Loctite Rc/609 Retaining Compound or comparable product to the outer surface of the bearing. Press the bearing into the back cover until it rests on the shoulder. The shield on the bearing must face away from the back cover.

4. Reassemble Housing and Back Cover

- a. Stand the pump on end.
- b. With the pistons and connecting rods in place, reinstall the crankshaft by threading it through the connecting rods.
- c. Reinstall the back cover, cover O-ring, and bolts (with their O-rings).

5. Reinstall Diaphragms

- a. Screw the plunger guide lifter (from the Wanner Tool Kit or Repair Kit) into the valve plunger (24). Pull out to expose the cross holes in the plunger. Rotate the shaft until the piston is at top dead center.
- b. Insert the plunger holder tool (from the Wanner Tool Kit), through the plunger hole — to hold the plunger away from the diaphragm plate (18), and to keep the plunger from turning when the diaphragm is being installed.
- c. Engage the diaphragm insert threads to the plunger threads, and turn the diaphragm by hand until the insert hits the shoulder of the valve plunger (24).
- Hold the plunger holder tool to secure the valve plunger, and torque the diaphragm insert to 10 in.-lbs (110 N-cm) using a 5/16-in. (8-mm) open-end wrench.
- e. Repeat the above procedure for the plungers and diaphragms of the other two cylinders.
- f. Fill the reservoir with fresh oil and prime the pump, as outlined in the Fluid-End Service Section.

6. Reassemble Pump

Reassemble the pump as outlined in the Fluid-End Service Section.

D/G-04 Troubleshooting

Cavitation

- Inadequate fluid supply because:
 - Inlet line collapsed or clogged
 - Clogged line strainer
 - Inlet line too small or too long
 - Air leak in inlet line
 - Worn or damaged inlet hose
 - Suction line too long
- Too many valves and elbows in inlet line
- Fluid too hot for inlet suction piping system.
- Air entrained in fluid piping system.
- Aeration and turbulence in supply tank.
- Inlet vacuum too high (refer to "Inlet Calculations", page 3).

Symptoms of Cavitation

- Excessive pump valve noise
- Premature failure of spring or retainer
- Volume or pressure drop
- Rough-running pump
- Premature failure of diaphragms

Drop in Volume or Pressure

A drop in volume or pressure can be caused by one or more of the following:

- Air leak in suction piping
- · Clogged suction line or suction strainer
- Suction line inlet above fluid level in tank
- Inadequate fluid supply
- Pump not operating at proper RPM
- Relief valve bypassing fluid
- Worn pump valve parts
- · Foreign material in inlet or outlet valves
- · Loss of oil prime in cells because of low oil level
- Ruptured diaphragm
- Cavitation
- · Warped manifold from overpressurized system
- O-rings forced out of their grooves from overpressurization
- Air leak in suction line strainer or gasket
- Cracked suction hose.
- Empty supply tank
- Excessive aeration and turbulence in supply tank
- Cavitation
- Abrasives in the fluid
- · Valve incompatible with corrosives in the fluid
- Pump running too fast
- Worn and slipping drive belt(s)
- Worn spray nozzle(s)

Pump Runs Rough

- Worn pump valves
- Airlock in outlet system
- Oil level low
- Wrong weight of oil for cold operating temperatures (change to lighter weight)
- Cavitation
- Air in suction line
- Restriction in inlet/suction line
- Hydraulic cells not primed after changing diaphragm
- Foreign material in inlet or outlet valve
- Damaged diaphragm
- Fatigued or broken valve spring

Premature Failure of Diaphragm

- Frozen pump
- Puncture by a foreign object
- · Elastomer incompatible with fluid being pumped
- Pump running too fast
- Excess pressure
- Cavitation

Water (or Process Fluid) in Oil Reservoir

- Condensation
- Ruptured diaphragm
- Hydraulic cell not properly primed after diaphragm replacement
- Frozen pump

Strong Water (or Process Fluid) Pulsations

NOTE: Small pulsations are normal in single-acting pumps with multiple pumping chambers.

- Foreign object lodged in pump valve
- Loss of prime in hydraulic cell because of low oil level
- Air in suction line
- Valve spring (8) broken
- Cavitation
- Aeration or turbulence in supply tank

D/G-04 Troubleshooting

Valve Wear

- Normal wear from high-speed operation
- Cavitation
- Abrasives in the fluid
- · Valve incompatible with corrosives in the fluid
- Pump running too fast

Loss of Oil

- External seepage
- Rupture of diaphragm
- Frozen pump
- Worn shaft seal
- Oil drain piping or fill cap loose.
- Valve plate and manifold bolts loose
- Pump housing porosity

Premature Failure of Valve Spring or Retainer

- Cavitation
- Foreign object in the pump
- Pump running too fast
- Spring/retainer material incompatible with fluid being pumped
- Excessive inlet pressure.

Limited Warranty

Wanner Engineering, Inc. extends to the original purchaser of equipment manufacturerd by it and bearing its name, a limited one-year warranty from the date of purchase against defects in material or workmanship, provided that the equipment is installed and operated in accordance with the recommendations and instructions of Wanner Engineering, Inc. Wanner Engineering, Inc. will repair or replace, at its option, defective parts without charge if such parts are returned with transportation charges prepaid to Wanner Engineering, Inc., 1204 Chestnut Avenue, Minneapolis, Minnesota 55403.

This warranty does not cover:

1. The electric motors (if any), which are covered by the separate warranties of the manufacturers of these components.

2. Normal wear and/or damage caused by or related to abrasion, corrosion, abuse, negligence, accident, faulty installation or tampering in a manner which impairs normal operation.

3. Transportation costs.

This limited warranty is exclusive, and is in lieu of any other warranties (express or implied) including warranty of merchantability or warranty of fitness for a particular purpose and of any noncontractual liabilities including product liabilities based on negligence or strict liability. Every form of liability for direct, special, incidental or consequential damages or loss is expressly excluded and denied.

1204 Chestnut Avenue, Minneapolis, MN 55403 TEL: (612) 332-5681 FAX: (612) 332-6937 TOLL-FREE FAX [US only]: (800) 332-6812

www.hydra-cell.com email: sales@wannereng.com